Temporal sparsity exploiting nonlocal regularization for 4D computed tomography reconstruction
نویسندگان
چکیده
X-ray imaging applications in medical and material sciences are frequently limited by the number of tomographic projections collected. The inversion of the limited projection data is an ill-posed problem and needs regularization. Traditional spatial regularization is not well adapted to the dynamic nature of time-lapse tomography since it discards the redundancy of the temporal information. In this paper, we propose a novel iterative reconstruction algorithm with a nonlocal regularization term to account for time-evolving datasets. The aim of the proposed nonlocal penalty is to collect the maximum relevant information in the spatial and temporal domains. With the proposed sparsity seeking approach in the temporal space, the computational complexity of the classical nonlocal regularizer is substantially reduced (at least by one order of magnitude). The presented reconstruction method can be directly applied to various big data 4D (x, y, z+time) tomographic experiments in many fields. We apply the proposed technique to modelled data and to real dynamic X-ray microtomography (XMT) data of high resolution. Compared to the classical spatio-temporal nonlocal regularization approach, the proposed method delivers reconstructed images of improved resolution and higher contrast while remaining significantly less computationally demanding.
منابع مشابه
4D Computed Tomography Reconstruction from Few-Projection Data via Temporal Non-local Regularization
4D computed tomography (4D-CT) is an important modality in medical imaging due to its ability to resolve patient anatomy motion in each respiratory phase. Conventionally 4D-CT is accomplished by performing the reconstruction for each phase independently as in a CT reconstruction problem. We propose a new 4D-CT reconstruction algorithm that explicitly takes into account the temporal regularizati...
متن کاملCardiac C-arm computed tomography using a 3D + time ROI reconstruction method with spatial and temporal regularization.
PURPOSE Reconstruction of the beating heart in 3D + time in the catheter laboratory using only the available C-arm system would improve diagnosis, guidance, device sizing, and outcome control for intracardiac interventions, e.g., electrophysiology, valvular disease treatment, structural or congenital heart disease. To obtain such a reconstruction, the patient's electrocardiogram (ECG) must be r...
متن کاملImage Reconstruction for Diffuse Optical Tomography Based on Radiative Transfer Equation
Diffuse optical tomography is a novel molecular imaging technology for small animal studies. Most known reconstruction methods use the diffusion equation (DA) as forward model, although the validation of DA breaks down in certain situations. In this work, we use the radiative transfer equation as forward model which provides an accurate description of the light propagation within biological med...
متن کاملA fast reconstruction algorithm for fluorescence molecular tomography with sparsity regularization.
Through the reconstruction of the fluorescent probe distributions, fluorescence molecular tomography (FMT) can three-dimensionally resolve the molecular processes in small animals in vivo. In this paper, we propose an FMT reconstruction algorithm based on the iterated shrinkage method. By incorporating a surrogate function, the original optimization problem can be decoupled, which enables us to...
متن کامل4d-ct Reconstruction with Unified Spatial-temporal Patch-based Regularization
In this paper, we consider a limited data reconstruction problem for temporarily evolving computed tomography (CT), where some regions are static during the whole scan and some are dynamic (intensely or slowly changing). When motion occurs during a tomographic experiment one would like to minimize the number of projections used and reconstruct the image iteratively. To ensure stability of the i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 24 شماره
صفحات -
تاریخ انتشار 2016